hadoop streaming을 처음 하는 사람에게 추천하는 글
http://www.michael-noll.com/tutorials/writing-an-hadoop-mapreduce-program-in-python/
mapper.py
#!/usr/bin/env python
import sys
# input comes from STDIN (standard input)
for line in sys.stdin:
# remove leading and trailing whitespace
line = line.strip()
# split the line into words
words = line.split()
# increase counters
for word in words:
# write the results to STDOUT (standard output);
# what we output here will be the input for the
# Reduce step, i.e. the input for reducer.py
#
# tab-delimited; the trivial word count is 1
print '%s\t%s' % (word, 1)
reducer.py
#!/usr/bin/env python
from operator import itemgetter
import sys
current_word = None
current_count = 0
word = None
# input comes from STDIN
for line in sys.stdin:
# remove leading and trailing whitespace
line = line.strip()
# parse the input we got from mapper.py
word, count = line.split('\t', 1)
# convert count (currently a string) to int
try:
count = int(count)
except ValueError:
# count was not a number, so silently
# ignore/discard this line
continue
# this IF-switch only works because Hadoop sorts map output
# by key (here: word) before it is passed to the reducer
if current_word == word:
current_count += count
else:
if current_word:
# write result to STDOUT
print '%s\t%s' % (current_word, current_count)
current_count = count
current_word = word
# do not forget to output the last word if needed!
if current_word == word:
print '%s\t%s' % (current_word, current_count)
실행
hadoop jar contrib/streaming/hadoop-*streaming*.jar \
-mapper ./mapper.py \
-reducer ./reducer.py \
-file ./mapper.py \
-file ./reducer.py \ -input /user/hduser/gutenberg/* \
-output /user/hduser/gutenberg-output
'hadoop' 카테고리의 다른 글
[hive] 데이터를 하나로 합치기 (0) | 2016.02.29 |
---|---|
[hive] 날짜 구하기 (0) | 2016.02.26 |
[hadoop] top n 소팅 (0) | 2016.02.16 |
[hadoop] scoop 쓸 때 유의사항 (0) | 2016.02.05 |
[hadoop] hadoop distcp (0) | 2016.02.05 |